Cysteine desulfurase IscS is required for cellular iron-sulfur protein maturation in eukaryotes and prokaryotes. In this study, we examined the effect of dietary iron intake on the expression in rat skeletal muscle of IscS in relation to 2 iron-sulfur proteins, cytosotic aconitase (c-aconitase) and mitochondrial aconitase (m-aconitase). Three groups of male weanling Wistar rats were used; 1 group was fed an iron-deficient diet (D), and the other 2 groups were pair-fed (P) or freely fed (C) a control (35 mg Fe/kg diet) diet for 1 or 2 wk. At the end of wk 1 and 2, the mitochondrial IscS protein levels in the skeletal muscle of iron-deficient rats had decreased to 45 and 50% of those of the control and pair-fed rats, respectively, whereas the IscS mRNA levels did not differ among the 3 groups, indicating that iron deficiency affected the expression of IscS protein at the post-transcriptional level. Iron deficiency caused a 55-76% reduction in c-aconitase activity and an ∼50% reduction in the c-aconitase protein level. The m-aconitase activity and protein level in iron-deficient rats also declined to 50 and 58-64% of the control levels, respectively. Our results indicate that dietary iron modulates mitochondrial IscS protein and aconitase at the post-transcriptional level, and mitochondrial IscS may be associated with this regulation of aconitase in skeletal muscle. © 2005 American Society for Nutritional Sciences.
CITATION STYLE
Liew, Y. F., & Shaw, N. S. (2005). Mitochondrial cysteine desulfurase iron-sulfur cluster S and aconitase are post-transcriptionally regulated by dietary iron in skeletal muscle of rats. Journal of Nutrition, 135(9), 2151–2158. https://doi.org/10.1093/jn/135.9.2151
Mendeley helps you to discover research relevant for your work.