Cell-growth phase-dependent promoter replacement approach for improved poly(lactate-co-3-hydroxybutyrate) production in Escherichia coli

1Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Escherichia coli is a useful platform for producing valuable materials through the implementation of synthetic gene(s) derived from other organisms. The production of lactate (LA)-based polyester poly[LA-co-3-hydroxybutyrate (3HB)] was carried out in E. coli using a set of five other species-derived genes: Pseudomonas sp. 61-3-derived phaC1STQK (for polymerization), Cupriavidus necator-derived phaAB (for 3HB-CoA generation), and Megasphaera elsdenii-derived pct (for LA-CoA generation) cloned into pTV118NpctphaC1ps(ST/QK)AB. Here, we aimed to optimize the expression level and timing of these genes to improve the production of P(LA-co-3HB) and to manipulate the LA fraction by replacing the promoters with various promoters in E. coli. Evaluation of the effects of 21 promoter replacement plasmids revealed that the phaC1STQK-AB operon is critical for the stationary phase for P(LA-co-3HB) production. Interestingly, the effects of the promoters depended on the composition of the medium. In glucose-supplemented LB medium, the dps promoter replacement plasmid resulted in the greatest effect, increasing the accumulation to 8.8 g/L and an LA fraction of 14.1 mol% of P(LA-co-3HB), compared to 2.7 g/L and 8.1 mol% with the original plasmid. In xylose-supplemented LB medium, the yliH promoter replacement plasmid resulted in the greatest effect, with production of 5.6 g/L and an LA fraction of 40.2 mol% compared to 3.6 g/L and 22.6 mol% with the original plasmid. These results suggest that the selection of an appropriate promoter for expression of the phaC1STQK-AB operon could improve the production and LA fraction of P(LA-co-3HB). Here, we propose that the selection of cell-growth phase-dependent promoters is a versatile biotechnological strategy for effective intracellular production of polymeric materials such as P(LA-co-3HB), in combination with the selection of sugar-based carbon sources.

Cite

CITATION STYLE

APA

Nagao, Y., Koh, S., Taguchi, S., & Shimada, T. (2023). Cell-growth phase-dependent promoter replacement approach for improved poly(lactate-co-3-hydroxybutyrate) production in Escherichia coli. Microbial Cell Factories, 22(1). https://doi.org/10.1186/s12934-023-02143-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free