Maternal diabetes mellitus (DM) affects early organogenesis. Metabolic disorders of DM are associated with a depleted zinc status. This study evaluated the effect of maternal DM on cardiac development of rat fetuses and protective roles of prenatal zinc versus insulin supplementation. Pregnant rats were divided into 4 groups ((I) control, (II) STZ-induced DM, (III) STZ-induced DM treated with Zn, and (IV) STZ induced DM treated with insulin), all sacrificed on GD 20. Fetal heart weight of diabetic rats showed significant decrease compared to controls (P < 0.05). H&E stained section of controls had normal appearance of the myocardium, compared to diabetics that showed myocardial disarray with characteristic degenerative changes. Sections of zinc treated group showed restored architecture of normal myofibrils with minimal degenerative changes, while those of insulin treated group show partial restoration of the normal architecture of cardiomyocytes with focal improvement of cardiac tissue. Caspase-3 immunostained slides showed positive cytoplasmic immunoreactivity in diabetic group. But KI67 immunostained slides revealed negative nuclear immunoreaction in diabetics. We observed that gestational diabetes was associated with increased risk of fetal myocardial damage that might be caused by increased apoptotic level. Treating diabetic pregnant subjects with zinc and insulin was associated with improvement in myocardial integrity.
CITATION STYLE
Shams, A. S., Mohammed, M. H., Loka, M. M., & Abdel Rahman, G. M. (2016). Assessment of the Protective Role of Prenatal Zinc versus Insulin Supplementation on Fetal Cardiac Damage Induced by Maternal Diabetes in Rat Using Caspase-3 and KI67 Immunohistochemical Stains. Cardiology Research and Practice, 2016. https://doi.org/10.1155/2016/7469549
Mendeley helps you to discover research relevant for your work.