Until recently, the only way to observe the Universe was from light received by telescopes. But we are now able to measure gravitational waves, which are ripples in the fabric of the Universe predicted by Albert Einstein. If two very dense objects (like black holes) orbit each other closely, they warp space and send out gravitational waves. For black holes that are similar in mass to the Sun, scientists use the LIGO detector on Earth. But for the biggest black holes in the Universe (billions of times more massive than the Sun), scientists monitor a net of rapidly-spinning neutron stars (called pulsars) across the Milky Way. Any gravitational wave passing by will change how long radio signals from these pulsars take to get to Earth. The NANOGrav Collaboration monitored 34 of these pulsars over 11 years, in an attempt to detect gravitational waves from giant black holes.
CITATION STYLE
Taylor, S. R. (2019). Catching Gravitational Waves With a Galaxy-Sized Net of Pulsars. Frontiers for Young Minds, 7. https://doi.org/10.3389/frym.2019.00080
Mendeley helps you to discover research relevant for your work.