Single- and dual-source modeling of surface energy fluxes with radiometric surface temperature

89Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Single- and dual-source models of the surface energy transfer across the soil-vegetation-atmosphere interface were used in conjunction with remotely sensed surface temperature for computing the surface energy balance over heterogeneous surfaces. Both models are relatively simple so that only a few parameters are specified, making them potentially useful for computing surface fluxes with operational satellite observations. The models were tested with datasets collected from a semiarid rangeland environment with canopy cover generally less than 50% and a subhumid tallgrass prairie environment having canopy cover typically greater than 50%. For the semiarid site, differences between the single-source and dual-source model estimates of the sensible heat flux (H) and the observations averaged about 25%. For the tallgrass prairie, the disagreement between observations and single-source model estimates of H was significantly larger, averaging nearly 55%. The average difference between observations and the dual-source model predictions for the tallgrass prairie site increased slightly from the semiarid site to 30%. The latent heat flux (LE) was determined by residual from measurements of net radiation and model estimates of the soil heat flux. For the semiarid site, the single-source model estimates of LE differed on average with the observations by about 15%, whereas the LE values computed by the dual-source model differed by about 20%. For the tallgrass prairie site, the LE values from the single-source model differed from the observations by almost 35%, on average, whereas the dual-source model estimates produced an average difference of about 20%. Given the fact that energy flux observations by various techniques have been found to differ by at least 20%, the single-source model performed satisfactorily for the semiarid site but had difficulty reproducing the fluxes at the tallgrass prairie site. The dual-source model, however, performed reasonably well at both sites. To obtain results comparable to the dual-source model for the tallgrass prairie site, the single-source model required significant modifications to a parameter used in estimating the roughness length for heat.

Cite

CITATION STYLE

APA

Kustas, W. P., Humes, K. S., Norman, J. M., & Moran, M. S. (1996). Single- and dual-source modeling of surface energy fluxes with radiometric surface temperature. Journal of Applied Meteorology, 35(1), 110–121. https://doi.org/10.1175/1520-0450(1996)035<0110:SADSMO>2.0.CO;2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free