Time-frequency representation (TFR) is useful for non-stationary signal analysis as it provides information about the time-varying frequency components. This study proposes a novel TFR based on the improved eigenvalue decomposition of Hankel matrix and Hilbert transform (IEVDHM-HT). In the proposed method, first the authors decompose non-stationary signals using the IEVDHM with suitably defined criterion for eigenvalue selection, requirement of number of iterations, and new component merging criteria. Furthermore, the HT is applied on extracted components in order to obtain the TFR of non-stationary signals. The performance of proposed TFR has been evaluated on synthetic signals in clean and white noise environment with different signal-to-noise ratios. The proposed method gives good performance in terms of Rényi entropy measure in comparison with other existing methods. Application of the proposed TFR is also shown for the classification of epileptic seizure electroencephalogram (EEG) signals. The least-square support vector machine (LS-SVM) with radial basis function kernel is used for classification of seizure and seizure-free EEG signals obtained from the publicly available database by the University of Bonn, Germany. The proposed method has achieved classification accuracy 100% for the studied EEG database.
CITATION STYLE
Sharma, R. R., & Pachori, R. B. (2018). Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Science, Measurement and Technology, 12(1), 72–82. https://doi.org/10.1049/iet-smt.2017.0058
Mendeley helps you to discover research relevant for your work.