The influence of a redox-active ligand on spin-changing events induced by the coordination of exogenous donors is investigated within the cobalt complex [CoII(DPP·2-)], bearing a redox-active DPP2- ligand (DPP = dipyrrin-bis(o,p-di-tert-butylphenolato) with a pentafluorophenyl moiety on the meso-position. This square-planar complex was subjected to the coordination of tetrahydrofuran (THF), pyridine, tBuNH2, and AdNH2 (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (X-ray diffraction, NMR, UV-visible, high-resolution mass spectrometry, superconducting quantum interference device, Evans' method) and computational (density functional theory, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states, and orbital compositions of the corresponding octahedral bis-donor adducts, relative to [CoII(DPP·2-)]. This starting species is best described as an open-shell singlet complex containing a DPP·2- ligand radical that is antiferromagnetically coupled to a low-spin (S = 1/2) cobalt(II) center. The redox-active DPPn- ligand plays a crucial role in stabilizing this complex and in its facile conversion to the triplet THF adduct [CoII(DPP·2-)(THF)2] and closed-shell singlet pyridine and amine adducts [CoIII(DPP3-)(L)2] (L = py, tBuNH2, or AdNH2). Coordination of the weak donor THF to [CoII(DPP·2-)] changes the orbital overlap between the DPP·2- ligand radical π-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP·2- ligand. In contrast, coordination of the stronger donors pyridine, tBuNH2, or AdNH2 induces metal-to-ligand single-electron transfer, resulting in the formation of low-spin (S = 0) cobalt(III) complexes [CoIII(DPP3-)(L)2] containing a fully reduced DPP3- ligand, thus explaining their closed-shell singlet electronic ground states.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Van Leest, N. P., Stroek, W., Siegler, M. A., Van Der Vlugt, J. I., & Bruin, B. D. (2020). Ligand-Mediated Spin-State Changes in a Cobalt-Dipyrrin-Bisphenol Complex. Inorganic Chemistry, 59(17), 12903–12912. https://doi.org/10.1021/acs.inorgchem.0c01979