A chromium-reducing strain QH-1, identified as Bacillus sp., was isolated from soil under chromium-containing slag heap in Qinghai high altitude area, China. The strain was found to resist 200 mg/L Cr(VI), and Cr(VI) negatively affects the metabolic activity of the cells, as well as the cell morphology of Bacillus sp. QH-1. The reduction efficiency of Cr(VI) at concentrations of Cr(VI) 25 mg/L, 50 mg/L, 100 mg/L and 200 mg/L were 99.48 %, 65.99 %, 23.22 % and 6.99 %, respectively, decreasing with increasing initial Cr(VI) concentration. This indicates that the toxicity of Cr(VI) increased with concentration. Energy dispersive X-ray analysis revealed that there was insoluble Cr(III) generated during Cr(VI) reduction. In order to apply strain QH-1 to remove Cr(VI) from groundwater, factors of concentration of electron donors (glucose) and temperature were investigated in a synthetic medium. The results demonstrated that glucose could promote the reduction of Cr(VI) by this strain, and the general trend of Cr(VI) reduction increased with temperature within the range of 4 to 37 °C. Cr(VI) was reduced effectively at 25 °C and 37 °C, and all of Cr(VI) was reduced after 96 h at 37 °C, while the reduction was slow at 4 °C and 15 °C, and it almost ceased after about 120 h. These results could be potentially useful for the bioremediation of Cr(VI) in groundwater. © 2013 Springer-Verlag Berlin Heidelberg and the University of Milan.
CITATION STYLE
Xu, F., Ma, T., Shi, L., & Zhang, J. (2014). Bioreduction of Cr(VI) by Bacillus sp. QH-1 isolated from soil under chromium-containing slag heap in high altitude area. Annals of Microbiology, 64(3), 1073–1080. https://doi.org/10.1007/s13213-013-0746-2
Mendeley helps you to discover research relevant for your work.