LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways

90Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent studies reveal a crucial role of pericyte loss in sepsis-associated microvascular dysfunction. Sirtuin 3 (SIRT3) mediates histone protein post-translational modification related to aging and ischemic disease. This study investigated the involvement of SIRT3 in LPS-induced pericyte loss and microvascular dysfunction. Mice were exposed to LPS, expression of Sirt3, HIF-2α, Notch3 and angiopoietins/Tie-2, pericyte/endothelial (EC) coverage and vascular permeability were assessed. Mice treated with LPS significantly reduced the expression of SIRT3, HIF-2α and Notch3 in the lung. Furthermore, exposure to LPS increased Ang-2 while inhibited Ang-1/Tie-2 expression with a reduced pericyte/EC coverage. Intriguingly, knockout of Sirt3 upregulated Ang-2, but downregulated Tie-2 and HIF-2α/Notch3 expression which resulted in a dramatic reduction of pericyte/EC coverage and exacerbation of LPS-induced vascular leakage. Conversely, overexpression of Sirt3 reduced Ang-2 expression and increased Ang-1/Tie-2 and HIF-2α/Notch3 expression in the LPS treated mice. Overexpression of Sirt3 further prevented LPS-induced pericyte loss and vascular leakage. This was accompanied by a significant reduction of the mortality rate. Specific knockout of prolyl hydroxylase-2 (PHD2) increased HIF-2α/Notch3 expression, improved pericyte/EC coverage and reduced the mortality rate in the LPS-treated mice. Our study demonstrates the importance of SIRT3 in preserving vascular integrity by targeting pericytes in the setting of LPS-induced sepsis.

Cite

CITATION STYLE

APA

Zeng, H., He, X., Tuo, Q. H., Liao, D. F., Zhang, G. Q., & Chen, J. X. (2016). LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways. Scientific Reports, 6. https://doi.org/10.1038/srep20931

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free