In this paper, we prove the intractability of learning several classes of Boolean functions in the distribution-free model 1994 of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of well-known public-key cryptosystems to the learning problems. We prove that a polynomial-time learning algorithm for Boolean formulae, deterministic finite automata or constant-depth threshold circuits would have dramatic consequences for cryptography and number theory. In particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring. © 1994, ACM. All rights reserved.
CITATION STYLE
Kearns, M., & Valiant, L. (1994). Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. Journal of the ACM (JACM), 41(1), 67–95. https://doi.org/10.1145/174644.174647
Mendeley helps you to discover research relevant for your work.