Phagocytosis of a PFOB-nanoemulsion for 19F magnetic resonance imaging: First results in monocytes of patients with stable coronary artery disease and ST-elevation myocardial infarction

19Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Fluorine-19 magnetic resonance imaging (19F MRI) with intravenously applied perfluorooctyl bromide-nanoemulsions (PFOB-NE) has proven its feasibility to visualize inflammatory processes in experimental disease models. This approach is based on the properties of monocytes/macrophages to ingest PFOB-NE particles enabling specific cell tracking in vivo. However, information on safety (cellular function and viability), mechanism of ingestion and impact of specific disease environment on PFOB-NE uptake is lacking. This information is, however, crucial for the interpretation of 19F MRI signals and a possible translation to clinical application. To address these issues, whole blood samples were collected from patients with acute ST-elevation myocardial infarction (STEMI), stable coronary artery disease (SCAD) and healthy volunteers. Samples were exposed to fluorescently-labeled PFOB-NE and particle uptake, cell viability and migration activity was evaluated by flow cytometry and MRI.We were able to show that PFOB-NE is ingested by human monocytes in a time- and subset-dependent manner via active phagocytosis. Monocyte function (migration, phagocytosis) and viability was maintained after PFOB-NE uptake. Monocytes of STEMI and SCAD patients did not differ in their maximal PFOB-NE uptake compared to healthy controls. In sum, our study provides further evidence for a safe translation of PFOB-NE for imaging purposes in humans.

Cite

CITATION STYLE

APA

Nienhaus, F., Colley, D., Jahn, A., Pfeiler, S., Flocke, V., Temme, S., … Bönner, F. (2019). Phagocytosis of a PFOB-nanoemulsion for 19F magnetic resonance imaging: First results in monocytes of patients with stable coronary artery disease and ST-elevation myocardial infarction. Molecules, 24(11). https://doi.org/10.3390/molecules24112058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free