The different molecular code in generation of dopaminergic neurons from astrocytes and mesenchymal stem cells

8Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Transplantation of exogenous dopaminergic (DA) neurons is an alternative strategy to re-plenish DA neurons that have lost along the course of Parkinson’s disease (PD). From the perspective of ethical acceptation, the source limitations, and the intrinsic features of PD pathology, astrocytes (AS) and mesenchymal stem cells (MSCs) are the two promising candidates of DA induction. In the present study, we induced AS or MSCs primary culture by the combination of the classical transcription-factor cocktails Mash1, Lmx1a, and Nurr1 (MLN), the chemical cocktails (S/C/D), and the morphogens SHH, FGF8, and FGF2 (S/F8/F2); the efficiency of induction into DA neurons was further analyzed by using immunostaining against the DA neuronal markers. AS could be efficiently converted into the DA neurons in vitro by the transcriptional regulation of MLN, and the combination with S/C/D or S/F8/F2 further increased the conversion efficiency. In contrast, MSCs from umbilical cord (UC-MSCs) or adipose tissue (AD-MSCs) showed moderate TH immunoreactivity after the induction with S/F8/F2 instead of with MLN or S/C/D. Our data demonstrated that AS and MSCs held lineage-specific molecular codes on the induction into DA neurons and highlighted the unique superiority of AS in the potential of cell replacement therapy for PD.

Cite

CITATION STYLE

APA

Wang, N., Ji, X., Wu, Y., Zhou, S., Peng, H., Wang, J., … Zhang, J. (2021). The different molecular code in generation of dopaminergic neurons from astrocytes and mesenchymal stem cells. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212141

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free