Mitochondrial bioenergetics and disease in Caenorhabditis elegans

17Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Simple multicellular animal model systems are central to studying the complex mechanisms underlying a bewildering array of diseases involving dysfunctional mitochondria. Mutant nuclear- and mitochondrial-encoded subunits of the Caenorhabditis elegans mitochondrial respiratory chain (MRC) have been investigated, including GAS-1, NUO-1, NUO-6, MEV-1, SDHB-1, CLK-1, ISP-1, CTB-1, and ATP-2. These, as well as proteins that modify the MRC indirectly, have been studied on the molecular, cellular, and organismal levels through the variety of experimental approaches that are readily achievable in C. elegans. In C. elegans, MRC dysfunction can mimic signs and symptoms observed in human patients with primary mitochondrial disorders, such as neuromuscular deficits, developmental delay, altered anesthetic sensitivity, and increased lactate levels. Antioxidant dietary supplements, coenzyme Q substitutes, and flavin cofactors have been explored as potential therapeutic strategies. Furthermore, mutants with altered longevity have proved useful for probing the contributions of bioenergetics, reactive oxygen species, and stress responses to the process of aging. C. elegans will undoubtedly continue to provide a useful system in which to explore unanswered questions in mitochondrial biology and disease.

Cite

CITATION STYLE

APA

Dancy, B. M., Sedensky, M. M., & Morgan, P. G. (2015, January 15). Mitochondrial bioenergetics and disease in Caenorhabditis elegans. Frontiers in Bioscience - Landmark. Frontiers in Bioscience. https://doi.org/10.2741/4305

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free