We investigate the fueling and the feedback of star formation and nuclear activity in NGC1068, a nearby (D=14Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We have used ALMA to map the emission of a set of dense molecular gas tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3) and CS(7-6)) and their underlying continuum emission in the central r ~ 2kpc of NGC1068 with spatial resolutions ~ 0.3"-0.5" (~ 20-35pc). Molecular line and dust continuum emissions are detected from a r ~ 200pc off-centered circumnuclear disk (CND), from the 2.6kpc-diameter bar region, and from the r ~ 1.3kpc starburst (SB) ring. Most of the emission in HCO+, HCN and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the AGN, betraying ongoing feedback. The gas kinematics from r ~ 50pc out to r ~ 400pc reveal a massive (M_mol ~ 2.7 (+0.9, -1.2) x 10^7 Msun) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet and the occurrence of outward motions in the disk suggests that the outflow is AGN-driven. The outflow rate estimated in the CND, dM/dt ~ 63 (+21, -37) Msun yr^-1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN-driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion time scale of
CITATION STYLE
García-Burillo, S., Combes, F., Usero, A., Aalto, S., Krips, M., Viti, S., … van der Werf, P. P. (2014). Molecular line emission in NGC 1068 imaged with ALMA. Astronomy & Astrophysics, 567, A125. https://doi.org/10.1051/0004-6361/201423843
Mendeley helps you to discover research relevant for your work.