Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition

13Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A series of 24 compounds was synthesised based on a 2-cyclopentyloxyanisole scaffold 3–14 and their in vitro antitumor activity was evaluated. Compounds 4a, 4b, 6b, 7b, 13, and 14 had the most potent antitumor activity (IC50 range: 5.13–17.95 μM), compared to those of the reference drugs celecoxib, afatinib, and doxorubicin. The most active derivatives 4a, 4b, 7b, and 13 were evaluated for their inhibitory activity against COX-2, PDE4B, and TNF-α. Compounds 4a and 13 potently inhibited TNF-α (IC50 values: 2.01 and 6.72 μM, respectively) compared with celecoxib (IC50=6.44 μM). Compounds 4b and 13 potently inhibited COX-2 (IC50 values: 1.08 and 1.88 μM, respectively) comparable to that of celecoxib (IC50=0.68 μM). Compounds 4a, 7b, and 13 inhibited PDE4B (IC50 values: 5.62, 5.65, and 3.98 μM, respectively) compared with the reference drug roflumilast (IC50=1.55 μM). The molecular docking of compounds 4b and 13 with the COX-2 and PDE4B binding pockets was studied.Highlights Antitumor activity of new synthesized cyclopentyloxyanisole scaffold was evaluated. The powerful antitumor 4a, 4b, 6b, 7b & 13 were assessed as COX-2, PDE4B & TNF-α inhibitors. Compounds 4a, 7b, and 13 exhibited COX-2, PDE4B, and TNF-α inhibition. Compounds 4b and 13 showed strong interactions at the COX-2 and PDE4B binding pockets.

Cite

CITATION STYLE

APA

El-Husseiny, W. M., El-Sayed, M. A. A., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., & Abdel-Aziz, A. A. M. (2020). Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 744–758. https://doi.org/10.1080/14756366.2020.1740695

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free