Prevalence of Complex Organic Molecules in Starless and Prestellar Cores within the Taurus Molecular Cloud

  • Scibelli S
  • Shirley Y
59Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

The detection of complex organic molecules (COMs) toward dense, collapsing prestellar cores has sparked interest in the fields of astrochemistry and astrobiology, yet the mechanisms for COM formation are still debated. It was originally believed that COMs first form in ices, only to be irradiated by UV radiation from the surrounding interstellar radiation field as well as forming protostars, and subsequently photodesorbed into the gas phase. However, starless and prestellar cores do not have internal protostars to heat up and sublimate the ices. Alternative models using chemical energy have been developed to explain the desorption of COMs, yet in order to test these models, robust measurements of COM abundances are needed toward representative samples of cores. We have conducted a large sample survey of 31 starless and prestellar cores in the Taurus molecular cloud, detecting methanol (CH 3 OH) in 100% of the cores targeted and acetaldehyde (CH 3 CHO) in 70%. At least two transition lines of each molecule were measured, allowing us to place tight constraints on excitation temperature, column density, and abundance. Additional mapping of methanol revealed extended emission detected down to A V as low as ∼3 mag. We find that COMs are detectable in the gas phase and are being formed early, at least hundreds of thousands of years prior to star and planet formation. The precursor molecule, CH 3 OH, may be chemically linked to the more complex CH 3 CHO; however, higher spatial resolution maps are needed to further test chemical models.

Cite

CITATION STYLE

APA

Scibelli, S., & Shirley, Y. (2020). Prevalence of Complex Organic Molecules in Starless and Prestellar Cores within the Taurus Molecular Cloud. The Astrophysical Journal, 891(1), 73. https://doi.org/10.3847/1538-4357/ab7375

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free