IRAK1b, a Novel Alternative Splice Variant of Interleukin-1 Receptor-associated Kinase (IRAK), Mediates Interleukin-1 Signaling and Has Prolonged Stability

72Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Interleukin-1 (IL-1) is a pleiotropic cytokine essential for initiation of the immune response to infections and stress. IL-1 interacts with its type I receptor (IL-1RI) and triggers a number of intracellular signaling cascades leading to activation of transcription factors, transcriptional up-regulation of target genes, and mRNA stabilization. IL-1RI-associated kinase-1 (IRAK1) is a membrane proximal serine-threonine kinase involved in IL-1 signaling that becomes phosphorylated and progressively degraded in response to IL-1 induction. We have identified a novel variant of IRAK1, which we have named IRAK1b, that arises from the use of an alternative 5′-acceptor splice site defined by sequence within exon 12 of IRAK1. IRAK1b mRNA exhibits wide tissue expression and is evolutionarily conserved in both mouse and human. IRAK1b can activate the transcription factor nuclear factor κB and interacts with the IL-1 signaling factors Toll-interacting protein and tumor necrosis factor receptor-associated factor 6. It forms homodimers and heterodimers with the previously described isoform of IRAK1. We show that the IRAK1b protein is kinase-inactive and that, unlike IRAK1, its levels remain constant after IL-1 induction. The presence of an alternative splice variant of IRAK1, which is functionally active and highly stable following IL-1 stimulation, adds further complexity to the control mechanisms that govern IL-1 signaling.

Cite

CITATION STYLE

APA

Jensen, L. E., & Whitehead, A. S. (2001). IRAK1b, a Novel Alternative Splice Variant of Interleukin-1 Receptor-associated Kinase (IRAK), Mediates Interleukin-1 Signaling and Has Prolonged Stability. Journal of Biological Chemistry, 276(31), 29037–29044. https://doi.org/10.1074/jbc.M103815200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free