One main challenge to utilize cellulose-based fibers as the precursor for carbon fibers is their inherently low carbon yield. This study aims to evaluate the use of keratin in chicken feathers, a byproduct of the poultry industry generated in large quantities, as a natural charring agent to improve the yield of cellulose-derived carbon fibers. Keratin-cellulose composite fibers are prepared through direct dissolution of the pulp and feather keratin in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) and subsequent dry jet wet spinning (so-called Ioncell process). Thermogravimetric analysis reveals that there is an increase in the carbon yield by ∼53 wt % with 30 wt % keratin incorporation. This increase is comparable to the one observed for lignin-cellulose composite fibers, in which lignin acts as a carbon booster due to its higher carbon content. Keratin, however, reduces the mechanical properties of cellulose precursor fibers to a lesser extent than lignin. Keratin introduces nitrogen and induces the formation of pores in the precursor fibers and the resulting carbon fibers. Carbon materials derived from the keratin-cellulose composite fiber show potential for applications where nitrogen doping and pores or voids in the carbon are desirable, for example, for low-cost bio-based carbons for energy harvest or storage.
CITATION STYLE
Zahra, H., Selinger, J., Sawada, D., Ogawa, Y., Orelma, H., Ma, Y., … Hummel, M. (2022). Evaluation of Keratin-Cellulose Blend Fibers as Precursors for Carbon Fibers. ACS Sustainable Chemistry and Engineering, 10(26), 8314–8325. https://doi.org/10.1021/acssuschemeng.2c00976
Mendeley helps you to discover research relevant for your work.