Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma

84Citations
Citations of this article
129Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin. MAPK pathway hyperactivation (through Braf V600E or Kras G12D knockin) and TGFβ signalling ablation (through Tgfbr1 deletion) in LGR5 +ve stem cells enables rapid cSCC development in the mouse. Mutation of Tp53 (which is commonly mutated in sporadic cSCC) coupled with Tgfbr1 deletion in LGR5 +ve cells also results in cSCC development. These findings indicate that LGR5 +ve stem cells may act as cells of origin for cSCC, and that RAS/RAF/MAPK pathway hyperactivation or Tp53 mutation, coupled with loss of TGFβ signalling, are driving events of skin tumorigenesis.

Cite

CITATION STYLE

APA

Cammareri, P., Rose, A. M., Vincent, D. F., Wang, J., Nagano, A., Libertini, S., … Inman, G. J. (2016). Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 7. https://doi.org/10.1038/ncomms12493

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free