Drug repositioning by merging active subnetworks validated in cancer and COVID-19

4Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Computational drug repositioning aims at ranking and selecting existing drugs for novel diseases or novel use in old diseases. In silico drug screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of disease active subnetworks. DrugMerge uses differential transcriptomic data on drugs and diseases in the context of a large gene co-expression network. Experiments with four benchmark diseases demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Application of DrugMerge to COVID-19 found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge can mimic human expert judgment.

Cite

CITATION STYLE

APA

Lucchetta, M., & Pellegrini, M. (2021). Drug repositioning by merging active subnetworks validated in cancer and COVID-19. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-99399-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free