Electrochemical degradation of C.I. Reactive Orange 107 using Gadolinium (Gd3+), Neodymium (Nd3+) and Samarium (Sm3+) doped cerium oxide nanoparticles

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ceria-based composites have been previously developed as functional electrolytes for high performance of solid oxide fuel cells that require high functional electrolyte materials that can provide high ion conductivity for sufficient current output. These composites display hybrid proton and oxygen ion conduction. We developed further composite electrolyte materials containing a catalyst such as rare earth elements; gadolinium (Gd3+), neodymium (Nd3+) and samarium (Sm3+) doped ceria (Ce0.8Gd0.2O2, Ce0.8Nd0.2O2 and Ce0.8Sm0.2O2) to investigate the electrochemical treatment of C.I. Reactive Orange 107. An experimental results showed that the nanomaterial plays an important role for the electrochemical oxidation of reactive dye, where Ce0.8Gd0.2O2, Ce0.8Nd0.2O2 and Ce0.8Sm0.2O2 lead complete mineralization of selective dye. The results indicate that the overall performance in these schemes of operation is successful.

Cite

CITATION STYLE

APA

Rajkumar, K., Muthukumar, M., & Mangalaraja, R. V. (2015). Electrochemical degradation of C.I. Reactive Orange 107 using Gadolinium (Gd3+), Neodymium (Nd3+) and Samarium (Sm3+) doped cerium oxide nanoparticles. International Journal of Industrial Chemistry, 6(4), 285–295. https://doi.org/10.1007/s40090-015-0051-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free