The goal of this study is to understand the ability of a newly developed barrier membrane to enhance bone tissue regeneration. Here in this study we present the in vitro characterization of the barrier membrane made from type I collagen and crosslinked by oligomeric proanthocyanidins (OPCs). The effects of the membrane (P-C film) on cell cycle, proliferation, alkaline phosphatase activity, and mineralization were evaluated using the human osteoblast cell line MG-63, while the barrier ability was examined using MG-63 cells, as well as the human skin fibroblast cell line WS-1. The pore size is one of the factors that plays a key role in tissue regeneration, therefore, we evaluated the pore size of the membrane using a capillary flow porometer. Our results showed that the mean pore size of the P-C film was approximately 7–9 µm, the size known to inhibit cell migration across the membrane. The P-C film also demonstrated excellent cell viability and good biocompatibility, since the cell number increased with time, with MG-63 cells proliferating faster on the P-C film than in the cell culture flask. Furthermore, the P-C film promoted osteoblast differentiation, resulting in higher alkaline phosphatase activity and mineralization. Therefore, our results suggest that this P-C film has a great potential to be used in guided bone regeneration during periodontal regeneration and bone tissue engineering.
CITATION STYLE
Yang, H., Liu, W. C., Liu, X., Li, Y., Lin, C., Lin, Y. M., … Chung, R. J. (2021). Study on proanthocyanidins crosslinked collagen membrane for guided bone tissue regeneration. Journal of Applied Biomaterials and Functional Materials, 19. https://doi.org/10.1177/22808000211005379
Mendeley helps you to discover research relevant for your work.