Background: Liriodendron is a genus of Magnoliaceae, which consists of two relict species, Liriodendron chinense and L. tulipifera. Although the morphologies are highly similar, the two species exhibit different adaptive capacity. Dehydrins (DHNs) are abiotic stresses resistant proteins in planta, which are associated with adaptive evolution. To better understand the evolution divergence between L. chinense and L. tulipifera and how DHN genes are associated with adaptation evolution, we firstly investigated the DNA polymorphisms of the LcDHN-like gene in 21 L. chinense and 6 L. tulipifera populations. Results: A 707 bp LcDHN-like gene was cloned, which included a 477 bp open reading frame (ORF) and coding 158 amino acids. 311 LcDHN-like gDNA sequences were obtained from 70 L. chinense and 35 L. tulipifera individuals. The AMOVA and phylogenetic relationship analysis showed significant differences between the two species. A higher genetic diversity was observed in L. tulipifera compared to L. chinense, in consistent with the higher adaptive capacity of L. tulipifera. Our data also suggested that the LcDHN-like genes' polymorphisms were under neutral mutation and purifying selection model in the L. chinense and L. tulipifera populations, respectively. The distinct expanding range and rate between the two species, haplotypes shared only in L.chinense's nearby populations, and wide dispersals in L. tulipifera could contribute to the obscure east-west separation in L. chinense and entirely unordered phylogeny in L. tulipifera. The completely separated nonsynonymous substitution at position 875 and the higher range scope of aliphatic index in L. tulipifera populations may be related with its higher adaptive capacity. Taken together, our study suggests LcDHN-like gene is a potential mark gene responsible for adaptive evolution divergence in Liriodendron. Conclusions: Significant differences and completely distinct haplogroups between L. chinense and L. tulipifera showed that the two species have evolved into different directions. The more widely distribution, earlier haplogroups divergence events, and richer SNPs variations in L. tulipifera could imply its stronger adaptation in this species. And potential effect of the allelic variations in LcDHN-like gene may reflect the difference of water stress and chill tolerance between L. chinense and L. tulipifera, which could provide some information for further adaption evolution studies of Liriodendron.
CITATION STYLE
Cheng, Y., & Li, H. (2018). Interspecies evolutionary divergence in Liriodendron, evidence from the nucleotide variations of LcDHN-like gene. BMC Evolutionary Biology, 18(1). https://doi.org/10.1186/s12862-018-1318-7
Mendeley helps you to discover research relevant for your work.