Prediction of rotating stall and cavitation inception in pump turbines

  • Anciger D
  • Jung A
  • Aschenbrenner T
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The current development of modern pump storage plants aims towards a higher flexibility in operation, an extended operation range of the hydraulic machine, especially in the pumping mode, and a higher reliability. A major design target for state-of-the-art reversible Francis-type pump turbines is to find an optimal balance between pumping and generating performance. The pumping requirements are the crucial design drivers, since, even if the turbine mode performance is world class, the success of a project depends on the pump turbine delivering the required maximum pump head and starting reliably in pump mode. The proposed paper describes how advanced computational fluid dynamic (CFD) simulations can help the designer to evaluate his design with respect to hydraulic performance and dynamic phenomena occurring in pump turbines. A standard procedure today is to compute the flow by applying the Reynolds-averaged Navier-Stokes equations (RANS) on the steady-state flow in individual components or in multiple components which are coupled by mixing-plane interfaces (sometimes also called stage-interface). This standard approach gives fast turnaround times and is a good engineering tool. However, accuracy is limited due to necessary simplifications. Therefore methods are developed and evaluated which allow a more reliable prediction of the onset of rotating stall which is the operation limit of the pump under high heads and low flow rates. The behaviour a modern pump turbine design in this instability region is investigated in detail. Another important task in the design process is the proper prediction of cavitation phenomena in the runner. Predicting cavitating flows with multi-phase CFD computations is still a very challenging task. Some results of ongoing work in this field are presented and compared to single phase computations and results from model tests. The relevance and applicability of such computations is discussed. All the information gained from these kinds of simulations helps to provide an improved product with increased reliability despite the higher number of start and stop cycles that are typically required for modern pump storage power plants.

Cite

CITATION STYLE

APA

Anciger, D., Jung, A., & Aschenbrenner, T. (2010). Prediction of rotating stall and cavitation inception in pump turbines. IOP Conference Series: Earth and Environmental Science, 12, 012013. https://doi.org/10.1088/1755-1315/12/1/012013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free