Since human movement patterns are important for validating the performance of wireless networks, several traces of human movements in real life have been collected. However, collecting data about human movements is costly and time-consuming. Moreover, multiple traces are demanded to test various network scenarios. As a result, a lot of synthetic models of human movement have been proposed. Nevertheless, most of the proposed models were often based on random generation, and cannot produce realistic human movements. Although there have been a few models that tried to capture the characteristics of human movement in real life (e.g., flights, inter-contact times, and pause times following the truncated power-law distribution), those models still cannot reflect realistic human movements due to a lack of consideration for social context among people. To address those limitations, in this paper, we propose a novel human mobility model called the social relationship−aware human mobility model (SRMM), which considers social context as well as the characteristics of human movement. SRMM partitions people into social groups by exploiting information from a social graph. Then, the movements of people are determined by considering the distances to places and social relationships. The proposed model is first evaluated by using a synthetic map, and then a real road map is considered. The results of SRMM are compared with a real trace and other synthetic mobility models. The obtained results indicate that SRMM is consistently better at reflecting both human movement characteristics and social relationships.
CITATION STYLE
Duong, D. V. A., & Yoon, S. (2020). SRMM: A social relationship−aware human mobility model. Electronics (Switzerland), 9(2). https://doi.org/10.3390/electronics9020221
Mendeley helps you to discover research relevant for your work.