This study compares the effects on motor symptoms between conventional deep brain stimulation (cDBS) and closed-loop adaptive deep brain stimulation (aDBS) in patients with Parkinson’s Disease. The aDBS stimulation is controlled by the power in the beta band (12–35 Hz) of local field potentials recorded directly by subthalamic nucleus electrodes. Eight subjects were assessed in two 8-h stimulation sessions (first day, cDBS; second day, aDBS) with regular levodopa intake and during normal daily activities. The Unified Parkinson’s Disease Rating Scale (UPDRS) part III scores, the Rush scale for dyskinesias, and the total electrical energy delivered to the tissues per second (TEEDs) were significantly lower in the aDBS session (relative UPDRS mean, cDBS: 0.46 ± 0.05, aDBS: 0.33 ± 0.04, p = 0.015; UPDRS part III rigidity subset mean, cDBS: 2.9143 ± 0.6551 and aDBS: 2.1429 ± 0.5010, p = 0.034; UPDRS part III standard deviation cDBS: 2.95, aDBS: 2.68; p = 0.047; Rush scale, cDBS 2.79 ± 0.39 versus aDBS 1.57 ± 0.23, p = 0.037; cDBS TEEDs mean: 28.75 ± 3.36 µj s−1, aDBS TEEDs mean: 16.47 ± 3.33, p = 0.032 Wilcoxon’s sign rank test). This work further supports the safety and effectiveness of aDBS stimulation compared to cDBS in a daily session, both in terms of motor performance and TEED to the patient.
CITATION STYLE
Bocci, T., Prenassi, M., Arlotti, M., Cogiamanian, F. M., Borrellini, L., Moro, E., … Marceglia, S. (2021). Eight-hours conventional versus adaptive deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Npj Parkinson’s Disease, 7(1). https://doi.org/10.1038/s41531-021-00229-z
Mendeley helps you to discover research relevant for your work.