Modeling attention in neural multi-source sequence-to-sequence learning remains a relatively unexplored area, despite its usefulness in tasks that incorporate multiple source languages or modalities. We propose two novel approaches to combine the outputs of attention mechanisms over each source sequence, flat and hierarchical. We compare the proposed methods with existing techniques and present results of systematic evaluation of those methods on the WMT16 Multimodal Translation and Automatic Post-editing tasks. We show that the proposed methods achieve competitive results on both tasks.
CITATION STYLE
Libovický, J., & Helcl, J. (2017). Attention strategies for multi-Source sequence-to-Sequence learning. In ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers) (Vol. 2, pp. 196–202). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/P17-2031
Mendeley helps you to discover research relevant for your work.