The all-or-nothing flow problem in directed graphs with symmetric demand pairs

2Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We study the approximability of the All-or-Nothing multicommodity flow problem in directed graphs with symmetric demand pairs (SymANF). The input consists of a directed graph G = (V, E) and a collection of (unordered) pairs of nodes M = {s1t1,s2t2, S ktk}. A subset M′ of the pairs is routable if there is a feasible multicommodity flow in G such that, for each pair S iti ε M′, the amount of flow from s i to t i is at least one and the amount of flow from t i to s i is at least one. The goal is to find a maximum cardinality subset of the given pairs that can be routed. Our main result is a poly-logarithmic approximation with constant congestion for SymANF. We obtain this result by extending the well-linked decomposition framework of [6] to the directed graph setting with symmetric demand pairs. We point out the importance of studying routing problems in this setting and the relevance of our result to future work. © 2014 Springer International Publishing Switzerland.

Cite

CITATION STYLE

APA

Chekuri, C., & Ene, A. (2014). The all-or-nothing flow problem in directed graphs with symmetric demand pairs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8494 LNCS, pp. 222–233). Springer Verlag. https://doi.org/10.1007/978-3-319-07557-0_19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free