This study introduces two methods for crop identification and growth stage determination, focused primarily on enabling mobile robot navigation. These methods include a two-phase approach involving separate models for crop and growth stage identification and a one-phase method employing a single model capable of handling all crops and growth stages. The methods were validated with maize and sugar beet field images, demonstrating the effectiveness of both approaches. The one-phase approach proved to be advantageous for scenarios with a limited variety of crops, allowing, with a single model, to recognize both the type and growth state of the crop and showed an overall Mean Average Precision (mAP) of about 67.50%. Moreover, the two-phase method recognized the crop type first, achieving an overall mAP of about 74.2%, with maize detection performing exceptionally well at 77.6%. However, when it came to identifying the specific maize growth state, the mAP was only able to reach 61.3% due to some difficulties arising when accurately categorizing maize growth stages with six and eight leaves. On the other hand, the two-phase approach has been proven to be more flexible and scalable, making it a better choice for systems accommodating a wide range of crops.
CITATION STYLE
Cortinas, E., Emmi, L., & Gonzalez-de-Santos, P. (2023). Crop Identification and Growth Stage Determination for Autonomous Navigation of Agricultural Robots. Agronomy, 13(12). https://doi.org/10.3390/agronomy13122873
Mendeley helps you to discover research relevant for your work.