The tetraamine chelator outperforms HYNIC in a new technetium-99m-labelled somatostatin receptor 2 antagonist

17Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Somatostatin receptor targeting radiopeptides are successfully being used to image, stage, and monitor patients with neuroendocrine tumours. They are exclusively agonists that internalise upon binding to the relevant receptor. According to recent reports, antagonists may be preferable to agonists. To date, 99mTc-labelled somatostatin receptor antagonists have attracted little attention. Here, we report on a new somatostatin receptor subtype 2 (sst2) antagonist, SS-01 (p-Cl-Phe-cyclo(D-Cys-Tyr-D-Trp-Lys-Thr-Cys)D-Tyr-NH2), with the aim of developing 99mTc-labelled ligands for SPECT/CT imaging. SS-01 was prepared using Fmoc solid-phase synthesis and subsequently coupled to the chelators 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 6-carboxy-1,4,8,11-tetraazaundecane (N4), and 6-hydrazinonicotinic acid (HYNIC) to form the corresponding peptide-chelator conjugates SS-03, SS-04, and SS-05, respectively. SS-04 and SS-05 were radiolabelled with 99mTc and SS-03 with 177Lu. Binding affinity and antagonistic properties were determined using autoradiography and immunofluorescence microscopy. Biodistribution and small animal SPECT/CT studies were performed on mice bearing HEK293-rsst2 xenografts. Results: The conjugates showed low nanomolar sst2 affinity and antagonistic properties. 177Lu-DOTA-SS-01 (177Lu-SS-03) and 99mTc-N4-SS-01 (99mTc-SS-04) demonstrated high cell binding and low internalisation, whereas 99mTc-HYNIC/edda-SS-01 (99mTc-SS-05) showed practically no cellular uptake in vitro. The 99mTc-SS-04 demonstrated impressive tumour uptake at early time points, with 47% injected activity per gram tumour (%IA/g) at 1 h post-injection. The tumour uptake persisted after 4 h and was 32.5 %IA/g at 24 h. The uptake in all other organs decreased much more rapidly leading to high tumour-to-normal organ ratios, which was reflected in high-contrast SPECT/CT images. Conclusions: These data indicate a very promising 99mTc-labelled sst2-targeting antagonist. The results demonstrate high sensitivity of the 99mTc-labelling strategy, which was shown to strongly influence the receptor affinity, contrary to corresponding agonists. 99mTc-SS-04 exhibits excellent pharmacokinetics and imaging properties and appears to be a suitable candidate for SPECT/CT clinical translation.

References Powered by Scopus

Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use

991Citations
N/AReaders
Get full text

Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors

429Citations
N/AReaders
Get full text

Radiolabeled peptides: Valuable tools for the detection and treatment of cancer

277Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade

144Citations
N/AReaders
Get full text

Review on <sup>99m</sup>Tc radiopharmaceuticals with emphasis on new advancements

111Citations
N/AReaders
Get full text

Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy

84Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Abiraj, K., Ursillo, S., Tamma, M. L., Rylova, S. N., Waser, B., Constable, E. C., … Maecke, H. R. (2018). The tetraamine chelator outperforms HYNIC in a new technetium-99m-labelled somatostatin receptor 2 antagonist. EJNMMI Research, 8. https://doi.org/10.1186/s13550-018-0428-y

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 8

67%

Researcher 4

33%

Readers' Discipline

Tooltip

Chemistry 8

57%

Pharmacology, Toxicology and Pharmaceut... 3

21%

Medicine and Dentistry 2

14%

Biochemistry, Genetics and Molecular Bi... 1

7%

Save time finding and organizing research with Mendeley

Sign up for free