The dehydrogenation of 1,2-cyclohexanediol (CHD) helps in the effective utilization of not only fossil derivatives but also vicinal diols and polyols from sustainable biomass-derived resources. A thermodynamic analysis of CHD dehydrogenation was computed with density functional theory (DFT) calculation using Gaussian 09. The result indicates that CHD can be converted to 2-hydroxy cyclohexanone (HCO), 2-hydroxy-2-cyclohexen-1-one (HCEO) and pyrocatechol depending on the degree of dehydrogenation. HCO and HCEO are the stable products of the primary and secondary dehydrogenation. Experimentally, Cu/MgO catalysts were prepared using glucose as a reductant, and were characterized by SEM, TEM, XRD, XPS, TPR, BET and ICP. Furthermore, their catalytic performance regarding the oxygen-free dehydrogenation of CHD was investigated. The results indicate that the primary active crystalline phase of Cu/MgO was cu2+1O, and that the dehydrogenation products were mainly HCO and HCEO, in accordance with thermodynamic predictions. Upon optimizing the reaction conditions, the total selectivity of HCO and HCEO exceeded 90% and the conversion of CHD was approximately 95%.
CITATION STYLE
Wang, H. H., Yang, Q., Song, Y., & Wang, Y. (2019). Thermodynamic analysis and experimental study of selective dehydrogenation of 1,2-cyclohexanediol over cu2+1O/MgO catalysts. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030902
Mendeley helps you to discover research relevant for your work.