Effects of long-term sleep disruption on cognitive function and brain amyloid-β burden: A case-control study

10Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Recent evidence indicates that disrupted sleep could contribute to the development of Alzheimer's disease by influencing the production and/or clearance of the amyloid-β protein. We set up a case-control study to investigate the association between long-term work-induced sleep disruption, cognitive function, and brain amyloid-β burden. Methods: Nineteen male maritime pilots (aged 48-60 years) with chronic work-related sleep disruption and a sex-, age-, and education-matched control sample (n = 16, aged 50-60 years) with normal sleep completed the study. Primary sleep disorders were ruled out with in-lab polysomnography. Additional sleep measurements were obtained at home using actigraphy, sleep-wake logs, and a single-lead EEG device. Cognitive function was assessed with a neuropsychological test battery, sensitive to early symptomatic Alzheimer's disease. Brain amyloid-β burden was assessed in maritime pilots using 18F-flutemetamol amyloid PET-CT. Results: Maritime pilots reported significantly worse sleep quality (Pittsburgh Sleep Quality Index (PSQI) = 8.8 ± 2.9) during work weeks, compared to controls (PSQI = 3.2 ± 1.4; 95% CI 0.01 to 2.57; p = 0.049). This was confirmed with actigraphy-based sleep efficiency (86% ± 3.8 vs. 89.3% ± 4.3; 95% CI 0.43 to 6.03; p = 0.03). Home-EEG recordings showed less total sleep time (TST) and deep sleep time (DST) during work weeks compared to rest weeks (TST 318.56 (250.21-352.93) vs. TST 406.17 (340-425.98); p = 0.001; DST 36.75 (32.30-58.58) vs. DST 51.34 (48.37-69.30); p = 0.005)). There were no differences in any of the cognitive domains between the groups. For brain amyloid-β levels, mean global cortical standard uptake value ratios of 18F-flutemetamol were all in the normal range (1.009 ± 0.059; 95% CI 0.980 to 1.037), confirmed by visual reads. Conclusions: Capitalizing on the particular work-rest schedule of maritime pilots, this study with a small sample size observed that long-term intermittent sleep disruption had no effects on global brain amyloid-β levels or cognitive function.

Cite

CITATION STYLE

APA

Thomas, J., Ooms, S. J., Mentink, L. J., Booij, J., Olde Rikkert, M. G. M., Overeem, S., … Claassen, J. A. H. R. (2020). Effects of long-term sleep disruption on cognitive function and brain amyloid-β burden: A case-control study. Alzheimer’s Research and Therapy, 12(1). https://doi.org/10.1186/s13195-020-00668-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free