In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends

25Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.

Cite

CITATION STYLE

APA

Liu, Y., Yangui, A., Zhang, R., Kiligaridis, A., Moons, E., Gao, F., … Zhang, F. (2021). In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends. Small Methods, 5(10). https://doi.org/10.1002/smtd.202100585

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free