Super-resolution (SR) systems surpassing the Abbe diffraction limit have been theoretically and experimentally demonstrated using a number of different approaches and technologies: using materials with a negative refractive index, utilizing optical super-oscillation, using a resonant metalens, etc. However, recently it has been proved theoretically that in the Maxwell fish-eye lens (MFE), a device made of positive refractive index materials, the same phenomenon takes place. Moreover, using a simpler device equivalent to the MFE called the spherical geodesic waveguide (SGW), an SR of up to λ/3000 was simulated in COMSOL. Until now, only one piece of experimental evidence of SR with positive refraction has been reported (up to λ/5) for an MFE prototype working at microwave frequencies. Here, experimental results are presented for an SGW prototype showing an SR of up to λ/105. The SGW prototype consists of two concentric metallic spheres with an air space in between and two coaxial ports acting as an emitter and a receiver. The prototype has been analyzed in the range 1 GHz to 1.3 GHz. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
CITATION STYLE
Miñano, J. C., Sánchez-Dehesa, J., González, J. C., Benítez, P., Grabovičkić, D., Carbonell, J., & Ahmadpanahi, H. (2014). Experimental evidence of super-resolution better than λ/105 with positive refraction. New Journal of Physics, 16. https://doi.org/10.1088/1367-2630/16/3/033015
Mendeley helps you to discover research relevant for your work.