Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin

17Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The 8-oxodeoxyguanine (8-oxodG) repair system participates in the prevention and correction of mutations generated by oxidative DNA damage in prokaryotes and eukaryotes. In this study, we report that Pseudomonas aeruginosa strains deficient in this repair mechanism by inactivation of the mutT, mutM and mutY genes generate a high frequency of cells resistant to the antibiotic ciprofloxacin. In the mutT strain, the increase in ciprofloxacin resistance achieved at threefold minimal inhibitory concentration was about 1600-fold over the wild-type (WT) level, similar to the frequency achieved by the mismatch repair-deficient mutS strain. Molecular analysis of WT, mutT and mutY clones resistant to ciprofloxacin indicated that the nfxB gene was mutated in the majority of the cases, while mutS-derived resistant clones were mainly mutated in gyrA and parC genes. Cell viability analysis after treatment with paraquat or hydrogen peroxide indicated that 8-oxodG repair-deficient strains were considerably more susceptible to oxidative stress than the parental strain. Finally, it is shown that the ciprofloxacin resistance frequency of WT and repair-deficient strains increased significantly after cell exposure to paraquat. Thus, oxidative stress is strongly implicated in the emergence of ciprofloxacin-resistant mutants in P. aeruginosa, and the 8-oxodG repair pathway plays an important role in the prevention of these mutations. © 2008 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Morero, N. R., & Argaraña, C. E. (2009). Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin. FEMS Microbiology Letters, 290(2), 217–226. https://doi.org/10.1111/j.1574-6968.2008.01411.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free