Late nitrogen fertilization improves cotton yield through optimizing dry matter accumulation and partitioning

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cotton (Gossypium hirsutum L.) production efficiency is constrained by issues such as a low nitrogen (N) utilization rate (30–35 %) and high N application rate (300–350 kg ha−1) in particular arid climates, such as Xinjiang, the largest irrigated cotton-producing region in China. These issues could be alleviated by allocating more N to late application to satisfy plant needs for growth and development. Over a three-year (2019–2021) field experiment, 240 kg ha−1 N was applied in 3 periods (squaring, flowering to peak boll, and late peak boll). The amount of N applied in the second period was fixed at 60 %, and the remaining 40 % was split between the first and the third periods, with five ratios (treatments), i.e., 0:6:4 (N064), 1:6:3 (N163), 2:6:2 (N262), 3:6:1 (N361) and 4:6:0 (N460), to investigate cotton response in terms of growth, biomass accumulation, and yield. Compared with the conventional treatment (N262), the N064 treatment narrowed the plant width by 11.7–12.0 %, increased canopy light transmittance by 6.1–56.9 %, extended the boll growth period by 8.8–9.4 %, improved defoliation by 9.3–11.7 % and increased both seed cotton yield and N partial factor productivity by 7.1–8.1 %, depending on the year. N064 accumulated 4.3–39.5 % more biomass (K) than N262, with the average and maximum growth rates of the reproductive organs (Vt and Vm, respectively) increasing by 8.6–89.0 % and 6.9–125.7 %, respectively, while the fast growth duration (∆t) shortened by 9.9–31.6 %. Again, N064 partitioned 1.5–35.8 % more biomass to bolls (higher partitioning index, PIboll). Seed cotton yield was significantly positively correlated with K, t1, Vt, Vm and PIboll and negatively correlated with ∆t in reproductive organs. Collectively, the data suggest that allocating more N to late application could be an efficient N fertilizer management strategy in arid areas under N-reduced cultivation and fertigation.

Cite

CITATION STYLE

APA

Tian, Y., Wang, F., Shi, X., Shi, F., Li, N., Li, J., … Yang, G. (2023). Late nitrogen fertilization improves cotton yield through optimizing dry matter accumulation and partitioning. Annals of Agricultural Sciences, 68(1), 75–86. https://doi.org/10.1016/j.aoas.2023.06.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free