The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes

13Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: This study assessed novel approach of using highly lytic phages against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) biofilms with and without biofilm extracellular matrix- disrupting chemical. Method: The resultant phage-based control was assessed in relation to the type of biofilm extracellular matrix namely, polysaccharide intercellular adhesion (PIA) or proteinacious fibronectin-binding protein A (FnBPA). The biofilms were formed in vitro by 24 h incubation of bacteria in 96 wells microtiter plates at room temperature. The formed biofilms were assessed by tissue culture plate (TCP). Moreover, the nature of the biofilm was assessed by scanning electron microscopy (SEM) and PCR assay for detecting PIA genes, ciaA-D and FnBPA genes. Results: this study showed that applied phages with 0.08 % benezenthonium chloride, for PIA biofilms, and 0.06 % ethanol, for proteinacious FnBPA biofilms, exerted 100 % eradication for MSSA biofilms and about 78 % of MRSA biofilms. The phage-based control of biofilms with chemical adjuvant showed significantly higher efficiency than that without adjuvant (P < 0.05). Moreover, FnBPA biofilms were more common in MRSA than in MSSA while PIA biofilms were more common in MSSA than in MRSA. And the most resistant type of biofilms to phage-based control was FnBPA in MRSA where 50 % of biofilms were reduced but not eradicated completely. Conclusions: It is concluded that PIA-disturbing agent and protein denaturing alcohol can increase the efficiency of attacking phages in accessing host cell walls and lysing them which in turn lead to much more efficient MRSA and MSSA biofilm treatment and prevention.

Cite

CITATION STYLE

APA

Abdulamir, A. S., Jassim, S. A. A., Hafidh, R. R., & Bakar, F. A. (2015). The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Annals of Clinical Microbiology and Antimicrobials, 14(1). https://doi.org/10.1186/s12941-015-0106-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free