Absolute quantification of translational regulation and burden using combined sequencing approaches

  • Gorochowski T
  • Chelysheva I
  • Eriksen M
  • et al.
48Citations
Citations of this article
199Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Translation of mRNAs into proteins is a key cellular process. Ribosome binding sites and stop codons provide signals to initiate and terminate translation, while stable secondary mRNA structures can induce translational recoding events. Fluorescent proteins are commonly used to characterize such elements but require the modification of a part's natural context and allow only a few parameters to be monitored concurrently. Here, we combine Ribo-seq with quantitative RNA-seq to measure at nucleotide resolution and in absolute units the performance of elements controlling transcriptional and translational processes during protein synthesis. We simultaneously measure 779 translation initiation rates and 750 translation termination efficiencies across the Escherichia coli transcriptome, in addition to translational frameshifting induced at a stable RNA pseudoknot structure. By analyzing the transcriptional and translational response, we discover that sequestered ribosomes at the pseudoknot contribute to a σ32-mediated stress response, codon-specific pausing, and a drop in translation initiation rates across the cell. Our work demonstrates the power of integrating global approaches toward a comprehensive and quantitative understanding of gene regulation and burden in living cells.

Cite

CITATION STYLE

APA

Gorochowski, T. E., Chelysheva, I., Eriksen, M., Nair, P., Pedersen, S., & Ignatova, Z. (2019). Absolute quantification of translational regulation and burden using combined sequencing approaches. Molecular Systems Biology, 15(5). https://doi.org/10.15252/msb.20188719

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free