Machine learning algorithms are able to capture complex, nonlinear, interacting relationships and are increasingly used to predict agricultural yield variability at regional and national scales. Using explainable artificial intelligence (XAI) methods applied to such algorithms may enable better scientific understanding of drivers of yield variability. However, XAI methods may provide misleading results when applied to spatiotemporal correlated datasets. In this study, machine learning models are trained to predict simulated crop yield from climate indices, and the impact of cross-validation strategy on the interpretation and performance of the resulting models is assessed. Using data from a process-based crop model allows us to then comment on the plausibility of the “explanations” provided by XAI methods. Our results show that the choice of evaluation strategy has an impact on (i) interpretations of the model and (ii) model skill on held-out years and regions, after the evaluation strategy is used for hyperparameter tuning and feature selection. We find that use of a cross-validation strategy based on clustering in feature space achieves the most plausible interpretations as well as the best model performance on held-out years and regions. Our results provide the first steps toward identifying domain-specific “best practices” for the use of XAI tools on spatiotemporal agricultural or climatic data.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Sweet, L., Müller, C., Anand, M., & Zscheischler, J. (2023). Cross-Validation Strategy Impacts the Performance and Interpretation of Machine Learning Models. Artificial Intelligence for the Earth Systems, 2(4). https://doi.org/10.1175/aies-d-23-0026.1