Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells

37Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Adipose derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) may be equally beneficial in treating neurodegenerative diseases. However, ADSCs have practical advantages. In this study, we aimed to induce neurotrophic factors secreting cells in human ADSCs. Then, we compared the level of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion in neurotrophic factors secreting cells from human adipose and bone marrow-derived stem cells. Isolated human ADSCs and BMSCs were induced to neurotrophic factor (NTF)-secreting cells. The levels of expression and secretion of BDNF and CTNF of induced cells were assessed using immunocytochemical, Real-Time polymerase chain reaction, and enzyme linked immunosorbent assay (ELISA). The level of BDNF significantly increased in both the induced mesenchymal stem cells (MSCs) relative to ADSCs and the BMSCs (P < 0.01). Moreover, ELISA analysis showed that the release of BDNF in the induced BMSCs was almost twofold more than the induced ADSCs. Overall, NTF-secreting factor cells derived BMSCs and ADSCs could secret a range of different growth factors. Therefore, the variation in neurotrophic factors of different induced MSC populations suggest the possible beneficial effect of each specific kind of neurotrophic factor secreting cells for the treatment of a particular neurodegenerative disease. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

Cite

CITATION STYLE

APA

Razavi, S., Razavi, M. R., Zarkesh Esfahani, H., Kazemi, M., & Mostafavi, F. S. (2013). Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Development Growth and Differentiation, 55(6), 648–655. https://doi.org/10.1111/dgd.12072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free