Synthesis of carbon nanoparticles from commercially available liquified petroleum gas

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The aim of this study was to synthesize carbon nanoparticles (CNPs) from commercially available liquefied petroleum gas (LPG). In the research procedure, LPG was reacted with air to construct CNPs. To confirm the successful synthesis of CNPs, we conducted several sample analyses: Gas Chromatography-Mass Spectrometry (GC-MS), Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), and Infrared Spectra (FTIR). We also varied LPG and oxygen mole ratios at 0.8; 2.4; 4.8; and 7.2. The GC-MS results indicated the composition of LPG was propane (58.90%), isobutane (18.35%), butane (22.26%), and butane, 2-methyl (0.48%). The TEM results showed that the particles were spheres with sizes of between 25 and 35 nm. The sizes of particles were controllable, depending on the mole ratio. The XRD results showed mole ratios of LPG and oxygen of 0.80 and 2.40 were natural graphite, whereas the mole ratios of 4.80 and 7.20 were hexagonal graphite. FT-IR results showed CNPs have absorption peaks at wave number (i) 752 (C-H bend sp2); (ii) 835 (C=C); (iii) 1274 (C-O-C vibration); (iv) 1400 and 1600 (C-C stretch aromatic); (v) 2800 (C-H sp2); (vi) 2900 (CH sp3); (vii) 3100 (C-H aromatic); and (viii) 3400 cm-1 (O-H). From the FTIR analysis results, the sample contained allotrope graphite due to detection of peaks at 1400 and 1600 cm-1 (C-C stretch aromatic) and 3100 cm-1 (C-H aromatic).

Cite

CITATION STYLE

APA

Nandiyanto, A. B. D., Fadhlulloh, M. A., Rahman, T., & Mudzakir, A. (2016). Synthesis of carbon nanoparticles from commercially available liquified petroleum gas. In IOP Conference Series: Materials Science and Engineering (Vol. 128). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/128/1/012042

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free