Our understanding of trait evolution is built upon studies that examine the correlation between traits and fitness, most of which implicitly assume all individuals experience similar selective environments. However, accounting for differences in selective pressures, such as variation in the social environment, can advance our understanding of how selection shapes individual traits and subsequent fitness. In this study, we test whether variation in the social environment affects selection on individual phenotype. We apply a new sexual network framework to quantify each male's social environment as the mean body size of his primary competitors. We test for direct and social selection on male body size using a 10-year data set on black-throated blue warblers (Setophaga caerulescens), a territorial species for which body size is hypothesized to mediate competition for mates. We found that direct selection on body size was weak and nonsignificant, as was social selection via the body size of the males' competitors. Analysing both types of selection simultaneously allows us to firmly reject a role for body size in competitive interactions between males and subsequent male fitness in this population. We evaluate the application of the sexual network approach to empirical data and suggest that other phenotypic traits such as song characteristics and plumage may be more relevant than body size for male–male competition in this small passerine bird.
CITATION STYLE
Cramer, E. R. A., Kaiser, S. A., Webster, M. S., Sillett, T. S., & Ryder, T. B. (2017). Characterizing selection in black-throated blue warblers using a sexual network approach. Journal of Evolutionary Biology, 30(12), 2177–2188. https://doi.org/10.1111/jeb.13183
Mendeley helps you to discover research relevant for your work.