Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons

44Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

Abstract

Inhibitory synapses in the CNS can exhibit a considerable stability of neurotransmission over prolonged periods of high-frequency stimulation. Previously, we showed that synaptojanin 1 (SJ1), a presynaptic polyphosphoinositide phosphatase, is required for normal synaptic vesicle recycling (Cremona et al., 1999). We asked whether the stability of inhibitory synaptic responses was dependent on SJ1. Whole-cell patch-clamp recordings of unitary IPSCs were obtained in primary cortical cultures between cell pairs containing a presynaptic, fastspiking inhibitory neuron (33.5-35°C). Prolonged presynaptic stimulation (1000 stimuli, 2-20 Hz) evoked postsynaptic responses that decreased in size with a bi-exponential time course. A fast component developed within a few stimuli and was quantified with paired-pulse protocols. Paired-pulse depression (PPD) appeared to be independent of previous GABA release at intervals of ≥100 msec. The characteristics of PPD, and synaptic depression induced within the first ∼80 stimuli in the trains, were unaltered in SJ1-deficient inhibitory synapses. A slow component of depression developed within hundreds of stimuli, and steady-state depression showed a sigmoidal dependence on stimulation frequency, with half-maximal depression at 6.0 ± 0.5 Hz. Slow depression was increased when release probability was augmented, and there was a small negative correlation between consecutive synaptic amplitudes during steady-state depression, consistent with a presynaptic depletion process. Slow depression was increased in SJ1-deficient synapses, with half-maximal depression at 3.3 ± 0.9 Hz, and the recovery was retarded -3.6-fold. Our studies establish a link between a distinct kinetic component of physiologically monitored synaptic depression and a molecular modification known to affect synaptic vesicle reformation.

Cite

CITATION STYLE

APA

Lüthi, A., Di Paolo, G., Cremona, O., Daniell, L., De Camilli, P., & McCormick, D. A. (2001). Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. Journal of Neuroscience, 21(23), 9101–9111. https://doi.org/10.1523/jneurosci.21-23-09101.2001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free