Research has shown that the growing holiday travel demand in modern society has a significant influence on daily travel patterns. However, few studies have focused on the distinctness of travel patterns during a holiday season and as a specified case, travel behavior studies of the Chinese Spring Festival (CSF) at the city level are even rarer. This paper adopts a text-mining model (latent Dirichlet allocation (LDA)) to explore the travel patterns and travel purposes during the CSF season in Shenzhen based on the metro smart card data (MSC) and the points of interest (POIs) data. The study aims to answer two questions—(1) how to use MSC and POIs inferring travel purpose at the metro station level without the socioeconomic backgrounds of the cardholders? (2) What are the overall inner-city mobility patterns and travel activities during the Spring Festival holiday-week? The results show that six features of the CSF travel behavior are found and nine (three broad categories) travel patterns and trip activities are inferred. The activities in which travelers engaged during the CSF season are mainly consumption-oriented events, visiting relatives and friends and traffic-oriented events. This study is beneficial to metro corporations (timetable management), business owners (promotion strategy), researchers (travelers’ social attribute inference) and decision-makers (examine public service).
CITATION STYLE
Liu, J., Shi, W., & Chen, P. (2020). Exploring travel patterns during the holiday season—a case study of shenzhen metro system during the chinese spring festival. ISPRS International Journal of Geo-Information, 9(11). https://doi.org/10.3390/ijgi9110651
Mendeley helps you to discover research relevant for your work.