Ramelteon protects against human pulmonary microvascular endothelial cell injury induced by lipopolysaccharide (LPS) via activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway

12Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Acute lung injury (ALI) is classified as a moderate or mild acute respiratory distress syndrome and is a prominent cause of morbidity and mortality among the critically ill population. Ramelteon is a melatonin receptor agonist with anti-inflammatory and antioxidant effects. The current study investigated the role of ramelteon in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMECs) and its potential regulatory mechanisms. A CCK-8 assay was used to examine the effect of ramelteon on the viability of LPS-induced HPMECs, HPMECs treated with ML385 [a Nrf2 inhibitor] and HPMECs treated with SnPP [a HO-1 inhibitor]. The Nrf2/HO-1 signaling pathway was additionally assessed by performing Western blotting. The levels of oxidative stress and inflammatory cytokines in HPMECs were detected using kits and reverse transcription-quantitative PCR. Cell apoptosis was evaluated via TUNEL staining. Furthermore, cell permeability was assessed using a FITC-dextran fluorescent probe, ZO-1 and occludin expression was determined via Western blotting. The results demonstrated that ramelteon elevated HPMEC viability after LPS stimulation. Additionally, ramelteon markedly reduced LPS-induced oxidative stress, inflammation and apoptosis. Moreover, cell permeability was notably decreased in ramelteon-treated groups and was accompanied by upregulated ZO-1 and occludin expression. Ramelteon treatment also activated the Nrf2/HO-1 signaling pathway in LPS-induced HPMECs. Furthermore, the addition of ML385 or SnPP reversed the protective effects of ramelteon on LPS-induced oxidative stress, inflammation, apoptosis and cell dysfunction in HPMECs. Collectively, the results suggested that ramelteon alleviated LPS-induced HPMEC damage by activating the Nrf2/HO-1 signaling pathway, making it an effective treatment for ALI.

Cite

CITATION STYLE

APA

Yang, W., Zhang, Y., Lu, D., Huang, T., Yan, K., Wang, W., & Gao, J. (2022). Ramelteon protects against human pulmonary microvascular endothelial cell injury induced by lipopolysaccharide (LPS) via activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Bioengineered, 13(1), 1518–1529. https://doi.org/10.1080/21655979.2021.2021065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free