Simulation in Ultrasound Training for Obstetrics and Gynecology: A Literature Review

1Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Aim: The purpose of this review is to present the state of the art for simulation-based ultrasound training in obstetrics and gynecology. Background: Ultrasound (US) is a primary tool used in obstetrics and gynecology and has become indispensable in prenatal assessment and for diagnosing various gynecological pathologies. The core skills for US, however, are highly operator dependent. The American Institute of Ultrasound in Medicine (AIUM) assembled a multisociety task force in 2017 to develop standardized recommendations for curricula and competency assessment tools for the performance of basic OB/GYN ultrasound examinations in residency programs. Due to diminishing opportunities for training during residency programs, the task force encourages the use of US simulation during residency training and expects simulation to be a significant part of the curriculum and competency assessment process. Methods: A literature search was conducted for the key terms “ultrasound,” “OB/GYN,” “simulation,” and “phantoms,” for works published in English from 2017–2021 with clinically relevant results reviewed. Results: Based on the reviewed literature, there are three primary approaches for US simulation. These are grouped by their method of image generation: (1) software-based learning that occurs digitally or online through web-based programs or virtual reality (VR) systems, (2) mannequin-based, where a high-fidelity mannequin is paired with actual US images from a dataset, or 3) phantom-based training devices that simulate anatomical features for the practice of diagnostic or procedural skills. Commercially available mannequin-based simulators offer numerous pathologies for the evaluation of first and second-trimester pregnancies as well as normal anatomic features, allowing the learner to perform standard obstetric measurements and calculations in different fetal positions. Alternatively, the creation of custom US simulation trainers by a simulation center is a well-established technique to meet the needs of a specific training program. This may be to provide less expensive alternatives to commercial products, meet unique simulation requirements, or produce consumable simulation components. Conclusion: Simulation is an important component of resident training in OB/GYN due to the diminishing opportunities during clinical rotations. There are commercially available options for training in US imaging, acquisition, interpretation, and integration into diagnostics, however, the limitations for these are that they may not be customizable and can be rigid in their learning modules and objectives. Thus, self-made models can be constructed using materials that have been characterized for their US properties. Multiple phantom materials can be aggregated to construct functional task trainers that can be used for training in the acquisition of targets along various planes. Additionally, simulators allow for training of US-guided invasive procedures, which many times are low incidence/high-risk tasks. Clinical significance: With increasing time pressures for procedural and clinical efficiency as well as requirements for improved patient safety, clinical training opportunities are no longer a stand-alone option for resident procedural experience and training requirements. The use of simulation training in external training labs, or as a component of just-in-time training, is being used to meet these needs. Learners can gain required procedural baseline skills to allow focus on patient care delivery in the healthcare environment and less on device interaction, muscle memory training, or image interpretation.

Cite

CITATION STYLE

APA

Urbina, J., Monks, S. M., & Crawford, S. B. (2021, October 1). Simulation in Ultrasound Training for Obstetrics and Gynecology: A Literature Review. Donald School Journal of Ultrasound in Obstetrics and Gynecology. Jaypee Brothers Medical Publishers (P) Ltd. https://doi.org/10.5005/jp-journals-10009-1816

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free