Nonlinear data-based hydrodynamic modeling of a fixed oscillating water column wave energy device

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

System identification (SI) techniques represent an alternative strategy to provide the hydrodynamic model of oscillating water column (OWC) devices, compared to more traditional physics-based methods, such as linear potential theory (LPT) and computational fluid dynamics (CFD). With SI, the parameters of the model are obtained, by minimizing a model-related cost function, from input-output data. The main advantage of SI is its simplicity, as well as its potential validity range, where the dynamic model is valid over the full range for which the identification data was recorded. The paper clearly shows the value of a global nonlinear model, both in terms of accuracy and computational simplicity, over an equivalent multi-linear modelling solution. To this end, the validation performance of the nonlinear model is compared to the results provided by a range of linear models. Furthermore, in order to provide a more comprehensive comparative analysis, some practical aspects related to real-time implementation of multi-linear and nonlinear SI models are discussed. For the experimental campaign, real wave tank (RWT) data of a scaled OWC model are gathered from the narrow tank experimental facility at Dundalk Institute of Technology (DkIT). Particular attention is paid to the selection of suitable input signals for the experimental campaign, in order to ensure that the model is subjected to the entire range of equivalent frequencies, and amplitudes, over which model validity is required.

Cite

CITATION STYLE

APA

Rosati, M., Kelly, T., & Ringwood, J. V. (2021). Nonlinear data-based hydrodynamic modeling of a fixed oscillating water column wave energy device. IEEE Access, 9, 149756–149765. https://doi.org/10.1109/ACCESS.2021.3125600

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free