The Cerrado biome has presented challenges in reconciling its agricultural expansion with water availability. In this sense, water resources planning and management are fundamental for the economic, social, and environmental development of the Cerrado biome, which has been hampered by the lack of data, especially those referring to irrigation strategies, such as, for example, the water retention curve. The water retention curve is essential to understand water dynamics in the soil; however, obtaining it can be laborious, opening an opportunity for Pedotransfer Functions (PTFs). The current study aimed to develop and evaluate PTFs to estimate the fit parameters of the van Genuchten model for the Cerrado biome. Multiple Linear Regression (MLR) and four machine learning (ML) algorithms were used to develop the PTFs. The ML algorithms were the Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Support Vector Regression (SVR), and K Nearest Neighbors (KNN). Two combinations of soil data were evaluated, and the predictor variables used in each set were different. Using the RF and SVR models, the best estimates were obtained concerning the parameter θs (saturated water content). As for θr (residual water content), the models showed a moderate predictive capacity. For the other parameters, the models did not perform satisfactorily for α and n (fit parameters).
CITATION STYLE
Veloso, M. F., Rodrigues, L. N., Fernandes Filho, E. I., Veloso, C. F., & Rezende, B. N. (2023). Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome. Revista Brasileira de Engenharia Agricola e Ambiental, 27(3), 202–208. https://doi.org/10.1590/1807-1929/agriambi.v27n3p202-208
Mendeley helps you to discover research relevant for your work.