Machine Learning in Operating of Low Voltage Future Grid

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The article is a continuation of the authors’ ongoing research related to power flow and voltage control in LV grids. It outlines how the Distribution System Operator (DSO) can use Machine Learning (ML) technology in a future grid. Based on supervised learning, a Selectively Coherent Model of Converter System Control for an LV grid (SCM_CSC) is proposed. This represents a fresh, new approach to combining off and on-line computing for DSOs, in line with the decarbonisation process. The main kernel of the model is a neural network developed from the initial prediction results generated by regression analysis. For selected PV system operation scenarios, the LV grid of the future dynamically controls the power flow using AC/DC converter circuits for Battery Energy Storage Systems (BESS). The objective function is to maintain the required voltage conditions for high PV generation in an LV grid line area and to minimise power flows to the MV grid. Based on the training and validation data prepared for artificial neural networks (ANN), a Mean Absolute Percentage Error (MAPE) of 0.15% BESS and 0.51–0.55% BESS 1 and BESS 2 were achieved, which represents a prediction error level of 170–300 VA in the specification of the BESS power control. The results are presented for the dynamic control of BESS 1 and BESS 2 using an ANN output and closed-loop PID control including a 2nd order filter. The research work represents a further step in the digital transformation of the energy sector.

Cite

CITATION STYLE

APA

Mroczek, B., & Pijarski, P. (2022). Machine Learning in Operating of Low Voltage Future Grid. Energies, 15(15). https://doi.org/10.3390/en15155388

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free