The uptake of trace metals from the diet is a significant route for their entry into marine animals, and the chemical form of trace metals accumulated by food organisms is one potential factor controlling their assimilation from the diet. Therefore, we investigated relationships between the assimilation efficiencies (AE) of the trace metals Cd, Ag and Zn in the neogastropod mollusc Nassarius festivus and their subcellular compartmentalized fractionation in selected tissues of 4 species of bivalve prey, seeking to identify the relative trophic availabilities of such different fractions. We also sought parallels between the AE of N. festivus and 2 in vitro models of digestion, a generalised invertebrate model and a human digestion model. The bivalves were the scallop Chlamys nobilis, the clam Marcia hiantina, the green mussel Perna viridis and the oyster Saccostrea cucullata, as these show a range of accumulated trace metal concentrations and detoxificatory binding to subcellular compartments. Measured assimilation efficiencies of N. festivus for Cd, Ag and Zn from invertebrate prey tissues are very high in comparison to other marine animals, assimilation occurs from accumulated metal in prey bound in subcellular fractions across the insoluble and soluble spectrum, and assimilation is best modelled in vitro by a human digestion model with low pH (1.3) rather than an invertebrate model (pH 5.6). It is concluded that what is trophically available to one predator (feeding on one prey type) is not necessarily trophically available to another (taxonomically separated) predator even if feeding on the same prey, given the variability between invertebrate digestive systems. Variation in the subcellular distribution of accumulated trace metals within different prey will also add variation in trophic availability even for the same metal. © Inter-Research 2007.
CITATION STYLE
Rainbow, P. S., Amiard, J. C., Amiard-Triquet, C., Cheung, M. S., Zhang, L., Zhong, H., & Wang, W. X. (2007). Trophic transfer of trace metals: Subcellular compartmentalization in bivalve prey, assimilation by a gastropod predator and in vitro digestion simulations. Marine Ecology Progress Series, 348, 128–138. https://doi.org/10.3354/meps07086
Mendeley helps you to discover research relevant for your work.